TY - JOUR

T1 - Long Cycles Passing Through a Specified Edge in a 3-Connected Graph

AU - Enomoto, Hikoe

AU - Hirohata, Kazuhide

AU - Ota, Katsuhiro

PY - 1997/3

Y1 - 1997/3

N2 - We prove the following theorem: For a connected noncomplete graph G, let τ(G): = min{dG(u) + dG(v)|dG(u, v) = 2}. Suppose G is a 3-connected noncomplete graph. Then through each edge of G there passes a cycle of length ≥ min{|V(G)|, τ(G) - 1}.

AB - We prove the following theorem: For a connected noncomplete graph G, let τ(G): = min{dG(u) + dG(v)|dG(u, v) = 2}. Suppose G is a 3-connected noncomplete graph. Then through each edge of G there passes a cycle of length ≥ min{|V(G)|, τ(G) - 1}.

UR - http://www.scopus.com/inward/record.url?scp=0347076283&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0347076283&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1097-0118(199703)24:3<275::AID-JGT9>3.0.CO;2-M

DO - 10.1002/(SICI)1097-0118(199703)24:3<275::AID-JGT9>3.0.CO;2-M

M3 - Article

AN - SCOPUS:0347076283

VL - 24

SP - 275

EP - 279

JO - Journal of Graph Theory

JF - Journal of Graph Theory

SN - 0364-9024

IS - 3

ER -